분류성능평가지표 : F1-score , Accuracy, ROC curve, AUC curve
2022.12.07 - [ML] - 오차행렬, FP, FN, F-score, Threshold Confusion Matrix TN : 4 / FP : 1 FN : 1 / TP : 2 from sklearn.metrics import confusion_matrix # assume y_true and y_pred are your true and predicted labels, respectively y_true = [0, 1, 1, 0, 1, 1, 0, 0] y_pred = [0, 1, 0, 0, 1, 1, 0, 1] cm = confusion_matrix(y_true, y_pred) >> array([[4, 1], [1, 2]]) Precision이나 Recall은 모두 실제 Positive인 정답을 모델..
2023. 2. 20.
MLE, MAP / prior, posterior, likelihood
베이지안 머신러닝 모델 모델 파라미터를 고정된 값이 아닌 불확실성(uncertainty)을 가진 확률 변수로 보는 것, 데이터를 관찰하면서 업데이트되는 값으로 보는 것 베이즈 정리(Bayes' theorem) prior(prior probability, 사전 확률) 데이터를 관찰하기 전 파라미터 공간에 주어진 확률 분포 확률분포 먼저 고정 후 데이터 받음. p(θ) likelihood(가능도, 우도) 파라미터의 분포 p(θ)가 정해졌을 때 x라는 데이터가 관찰될 확률 prior 분포를 고정한 후, 주어진 파라미터 분포에 대해서 우리가 갖고 있는 데이터가 얼마나 '그럴듯한지' 계산하는것 p(X=x∣θ) , L(θ∣x) 입력 데이터의 집합을 X, 라벨들의 집합을 Y라고 할 때, likelihood는 파라미터..
2023. 1. 18.
확률과 통계
1. 확률 (Probability) 이항(discrete) / 연속(continuous) 서로 배타적(mutually exclusive) : 시행의 모든 시도에서 한 사건 발생 시 다른 하나사건이 발생하지 않을 경우 집합(set), 원소(elements), 사건(events), 부분집합(subset), 전체집합(universal set), 공집합(null,empty set) 교집합(intersection), 합집합(union), 같음(equality) 여집합(complementary set; Set - A), 차집합(difference; A-B != B-A in Union), 서로소집합(disjoint set; A and B are mutually exclusive) A1,A2,…,An 이 서로 배..
2023. 1. 16.